
SOFTWARE PROJECT
MANAGEMENT

Prerequisite

• Students need to have knowledge of Software
Engineering and Object Oriented Analysis and
Design.

Course Objectives

• To study how to plan and manage projects at
each stage of the software development life cycle
(SDLC).

• To train software project managers and other
individuals involved in software project planning
and tracking and oversight in the implementation
of the software project management process.

• To understand successful software projects that
support organization’s strategic goals.

Course Outcomes

• Upon successful completion of the course, the students
will be able to:

• CO1 - Understand the basics of software organization as
related to project and process management.

• CO2 - Recognize the basic capabilities of software project.
• CO3 - Procure the basic steps of project planning and

project management.
• CO4 - Compare and differentiate organization structures

and project structures
• CO5 - Employ the responsibilities for tracking the software

projects.
• CO6 - Track the process automation and project control.

UNIT-I

• Conventional Software Management: The
Waterfall Model, Conventional Software
Management Performance.

• Evolution of Software Economics: Software
Economics, Pragmatic Software Cost
Estimation.

UNIT-II

• Improving Software Economics: Reducing
Software Product Size, Improving Software
Processes, Improving Team Effectiveness,
Improving Automation through Software
Environments, Achieving Required Quality, Peer
Inspections.

• The Old Way and the New: The Principles of
Conventional Software Engineering, The
Principles of Modern Software Management,
Transitioning to an Iterative Process.

UNIT-III

• Life-Cycle Phases: Engineering and Production
Stages, Inception Phase, Elaboration Phase,
Construction Phase, Transition phase.

• Artifacts of the Process: The Artifact Sets,
Management Artifacts, Engineering Artifacts,
Pragmatic Artifacts.

UNIT-IV

• Model-Based Software Architectures: A
Management Perspective and A Technical
Perspective.

• Workflows of the Process: Software Process
Workflows, Iteration Workflows.

• Checkpoints of the Process: Major
Milestones, Minor Milestones, Periodic Status
Assessments.

UNIT-V

• Iterative Process Planning: Work Breakdown
Structures, Planning Guidelines, The Cost and
Schedule Estimating Process, the Iteration
Planning Process, Pragmatic Planning.

• Project Organizations and Responsibilities:
Line-of-Business Organizations, Project
Organizations, Evolution of Organizations.

UNIT-VI

• Process Automation: Tools - Automation
Building Blocks, The Project Environment.

• Project Control and Process Instrumentation:
The Seven Core Metrics, Management
Indicators, Quality Indicators, Life-Cycle
Expectations.

TEXT BOOKS

1. Software Project Management : A Unified
Framework by Walker Royce: Pearson
Education, 2005.

REFERENCE BOOKS

1. Software Project Management by Bob
Hughes and Mike Cotterell: Tata McGraw-Hill
Edition.

2. Software Project Management by Joel Henry,
Pearson Education.

3. Software Project Management in practice by
Pankaj Jalote, Pearson Education, 2005.

UNIT-I

• Conventional Software Management: The
Waterfall Model, Conventional Software
Management Performance.

• Evolution of Software Economics: Software
Economics, Pragmatic Software Cost
Estimation.

UNIT-I
PART-A

Conventional Software Management:
The Waterfall Model, Conventional
Software Management Performance.

Conventional Software Management

• The best thing about software is its flexibility:

– It can be programmed to do almost anything.

• The worst thing about software is its flexibility:

• The “almost anything” characteristic has made it
difficult to plan, monitor, and control software
development.

• This unpredictability is the basis of what has been
referred to for the past 30 years as the “software
crisis.”

Conventional Software Management

• In the mid-1990s, at least three important
analyses of the state of the software engineering
industry were performed.

• The results were presented in Patterns of
Software Systems Failure and Success
[Jones,1996], in “Chaos” [Standish Group, 1995],
and in Report of the Defense Science Board Task
Force on Acquiring Defense Software
Commercially [Defense Science Board, 1994].

Conventional Software Management

• All three analyses reached the same general conclusion:
– The success rate for software projects is very low.

• Although the analysis had some different perspectives,
their primary messages were complementary and
consistent.

• They Summarized as follows:
1. Software development is still highly unpredictable. Only

10% of software projects are delivered successfully within
initial budget and scheduled time.

2. Management discipline is more of a discriminator in
success or failure than are technology advances.

3. The level of software scrap and rework is indicative of an
immature process.

Conventional Software Management

• The three analyses provide a good introduction to
the magnitude of the software problem and the
current norms for conventional software
management performance.

• There is much room for improvement.

Waterfall Model

• It is the baseline process for most
conventional software projects have used.

• We can examine this model in two ways:

– IN THEORY

– IN PRACTICE

In Theory

• In the year of 1968, Winston Royce, presented a
paper titled “Managing the Development of Large
Scale Software Systems” at IEEE WESCON.

• Based on this paper work his son walker Royce
proposed a model “Linear Sequential Model”
which is also called “waterfall model” in the year
1970.

• This model provides a road map for doing a
software engineering work.

• The paper made three primary points:

In Theory

1. There are two essential steps common to the
development of computer programs: analysis
and coding.

In Theory

2. In order to manage and control all of the
intellectual freedom associated with
software development, one should follow the
following steps, including System
requirements definition, Software
requirements definition Program design, and
testing.

– These steps supplement the analysis and coding
steps.

In Theory

In Theory

3. Since the testing phase is at the end of the
development cycle in the waterfall model, it
may be risky and invites failure. So we need
to do either the requirements must be
modified or a substantial design changes is
warranted by breaking the software in to
different pieces.

In Theory

In Theory

• There are five improvements to the basic waterfall model
that would eliminate most of the development risks are as
follows:

1. Complete program design before analysis and coding
begin (program design comes first):-
– By this technique, the program designer give surety that the

software will not fail because of storage, timing, and data
fluctuations.

– Begin the design process with program designer, not the analyst
or programmers.

– Write an overview document that is understandable,
informative, and current so that every worker on the project can
gain an elemental understanding of the system.

In Theory

2. Maintain current and complete
documentation (Document the design):-

– It is necessary to provide a lot of documentation
on most software programs.

– Due to this, helps to support later modifications
by a separate test team, a separate maintenance
team, and operations personnel who are not
software literate.

In Theory

3. Do the job twice, if possible (Do it twice):-

– If a computer program is developed for the first
time, arrange matters so that the version finally
delivered to the customer for operational
deployment is actually the second version insofar
as critical design/operations are concerned.

– “Do it N times” approach is the principle of
modern-day iterative development.

In Theory

4. Plan, control, and monitor testing:-
– The biggest user of project resources is the test phase. This

is the phase of greatest risk in terms of cost and schedule.
– In order to carryout proper testing the following things to

be done:

i. Employ a team of test specialists who were not
responsible for the original design.

ii. Employ visual inspections to spot the obvious errors
like dropped minus signs, missing factors of two,
jumps to wrong addresses.

iii. Test every logic phase.
iv. Employ the final checkout on the target computer.

In Theory

5. Involve the customer:-
– It is important to involve the customer in a formal way

so that he has committed himself at earlier points
before final delivery by conducting some reviews such
as,

i. Preliminary software review during preliminary
program design step.

ii. Critical software review during program design.

iii. Final software acceptance review following
testing.

In Practice

• Whatever the advices that are given by the software
developers and the theory behind the waterfall model,
some software projects still practice the conventional
software management approach.

• Projects intended for trouble frequently exhibit the
following symptoms:
– Protracted integration and late design breakage

– Late risk resolution

– Requirements-driven functional decomposition

– Adversarial stakeholder relationships

– Focus on documents and review meetings

Protracted Integration and Late

Design Breakage
• For a typical development project that used a waterfall

model management process, below figure illustrates
development progress versus time.

• Progress is defined as percent coded, i.e, demonstrable in
its target form.

• The following sequence was common:
– Early success via paper designs and thorough (often too

thorough) briefings
– Commitment to code late in the life cycle
– Integration nightmares due to unforeseen implementation

issues and interface ambiguities
– Heavy budget and schedule pressure to get the system working
– Late shoe-horning of nonoptimal fixes, with no time for redesign
– A very fragile, unmaintainable product delivered late

Protracted Integration and Late

Design Breakage

Protracted Integration and Late

Design Breakage
• Conventional techniques that imposed a waterfall model on

the design process inevitably resulted in late integration
and performance showstoppers.

• In the conventional model, the entire system was designed
on paper, then implemented all at once then integrated.

• Only at the end of this process was it possible to perform
system testing to verify that the fundamental architecture
(interfaces and structure) was sound.

• One of the recurring themes of projects following the
conventional process was that testing activities consumed
40% or more of life-cycle resources.

• Below table provides a typical profile of cost expenditures
across the spectrum of software activities.

Protracted Integration and Late

Design Breakage

Late Risk Resolution

• A serious issue associated with the waterfall life cycle was the
lack of early risk resolution.

• This was not so much a result of the waterfall life cycle as it
was of the focus on early paper artifacts, in which the real
design, implementation, and integration risks were still
relatively intangible.

• Below figure illustrates a typical risk profile for conventional
waterfall model projects.

• It includes four distinct periods of risk exposure, where risk is
defined as the probability of missing a cost, schedule, feature,
or quality goal.

• Early in the life cycle, as the requirements were being
specified, the actual risk exposure was highly unpredictable.

Late Risk Resolution

Requirements-Driven Functional

Decomposition
• Traditionally, the software development process has

been requirement-driven:
– An attempt is made to provide a precise requirements

definition and then to implement exactly those
requirements.

• This approach depends on specifying requirements
completely and clearly before other development
activities begin.

• It frankly treats all requirements as equally important.

• Specification of requirements is a difficult and
important part of the software development process.

Requirements-Driven Functional

Decomposition
• Another property of the conventional approach is that the

requirements were typically specified in a functional manner.
• Built into the classic waterfall process was the fundamental

assumption that the software itself was decomposed into functions;
requirements were then allocated to the resulting components.

• This decomposition was often very different from a decomposition
based on object-oriented design and the use of existing
components.

• The functional decomposition also became anchored in contracts,
subcontracts, and work breakdown structures, often precluding a
more architecture-driven approach.

• Below figure illustrates the result of requirements-driven
approaches: a software structure that is organized around the
requirements specification structure.

Requirements-Driven Functional

Decomposition

Adversarial Stakeholder

Relationships
• The following sequence of events was typical for

most contractual software efforts:

– The contractor prepared a draft contact-deliverable
document that captured an intermediate artifact and
delivered it to the customer for approval.

– The customer was expected to provide comments
(within 15 to 30days).

– The contractor integrated these comments and
submitted (typically within 15 to 30days) a final
version for approval.

Focus on Documents and Review
Meetings

• The conventional process focused on producing various
documents that attempted to describe the software
product.

• Contractors produce literally tons of paper to meet
milestones and demonstrate progress to stakeholders,
rather than spend their energy on tasks that would
reduce risk and produce quality software.

• Typically, presenters and the audience reviewed the
simple things that they understood rather than the
complex and important issues.

• Most design reviews resulted in low engineering and
high cost in terms of the effort and schedule involved
in their preparation and conduct.

Focus on Documents and Review
Meetings

Conventional Software Management
Performance

• Barry Boehm's one-page “Industrial Software

Metrics Top 10 List” is a good, objective

characterization of the state of software

development.

• Although many of the metrics are gross

generalizations, they accurately describe some

of the fundamental economic relationships that

resulted from the conventional software
process practiced over the past 30 years.

Conventional Software Management
Performance

1. Finding and fixing a software problem after

delivery costs 100 times more than finding

and fixing the problem in early design phases.

2. You can compress software development

schedules 25% of nominal (small), but no

more.

3. For every $1 you spend on development, you

will spend $2 on maintenance.

Conventional Software Management
Performance

4. Software development and maintenance costs

are primarily a function of the number of

source lines of code.

5. Variations among people account for the

biggest difference in software productivity.

6. The overall ratio of software to hardware

costs is still growing. In 1955 it was 15:85; in

1985, 85:15.

Conventional Software Management
Performance

7. Only about 15% of software development

effort is devoted to programming.

8. Software systems and products typically cost

3 times as much per SLOC as individual

software programs. Software-system products

(i.e., system of systems) cost 9 times as much.

9. Walkthroughs catch 60% of the errors.

Conventional Software Management
Performance

10. 80% of the contribution comes from 20% of the contributors.

The following fundamental postulates underlie the rationale for a

modern software management process framework:

✓ 80% of the engineering is consumed by 20% of the

requirements.

✓ 80% of the software cost is consumed by 20% of the

components.

✓ 80% of the errors are caused by 20% of the components.

✓ 80% of the software scrap and rework is caused by 20% of the

errors.

✓ 80% of the resources are consumed by 20% of the

components.

✓ 80% of the engineering is accomplished by 20% of the tools.

✓ 80% of the progress is made by 20% of the people.

	SOFTWARE PROJECT MANAGEMENT
	Prerequisite
	Course Objectives
	Course Outcomes
	UNIT-I
	UNIT-II
	UNIT-III
	UNIT-IV
	UNIT-V
	UNIT-VI
	TEXT BOOKS
	REFERENCE BOOKS
	UNIT-I
	UNIT-I PART-A
	Conventional Software Management
	Conventional Software Management
	Conventional Software Management
	Conventional Software Management
	Waterfall Model
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Theory
	In Practice
	Protracted Integration and Late Design Breakage
	Protracted Integration and Late Design Breakage
	Protracted Integration and Late Design Breakage
	Protracted Integration and Late Design Breakage
	Late Risk Resolution
	Late Risk Resolution
	Requirements-Driven Functional Decomposition
	Requirements-Driven Functional Decomposition
	Requirements-Driven Functional Decomposition
	Adversarial Stakeholder Relationships
	Focus on Documents and Review Meetings
	Focus on Documents and Review Meetings
	Conventional Software Management Performance
	Conventional Software Management Performance
	Conventional Software Management Performance
	Conventional Software Management Performance
	Conventional Software Management Performance

